Python提取数字图片特征向量

2017年8月3日12:13:32 3 4,446

Python提取数字图片特征向量

引言

机器学习中有一种学习叫做手写数字识别,其主要功能就是让机器识别出图片中的数字,其步骤主要包括:图片特征提取、将特征值点阵转化为特征向量、进行模型训练。第一步便是提取图片中的特征提取。数据的预处理关系着后面模型的构建情况,所以,数据的处理也是机器学习中非常重要的一部分。下面我就说一下如何提取图片中的特征向量。

图片灰度化

Python提取数字图片特征向量 =>Python提取数字图片特征向量

当我们拿到一种图片的时候,这张图片可能是多种颜色集合在一起的,而我们为了方便处理这张图片,我们首先会将这张图片灰度化(左图灰度化之前,右图灰度化之后)。如果该图片已经是黑白两色的就可以省略此步骤。

在图片灰度化之前这张图片的数组值应该是一个三维的,灰度化之后将变为二维数组。数组行列数就是图片的像素宽度和高度。

打印的数组形式如下:

Python提取数字图片特征向量

图片的二值化

图片的二值化就是将上面的数组化为0和1的形式,转化之前我们要设定一个阈值,大于这个阈值的像素点我们将其设置为1,小于这个阈值的像素点我们将其设置为0。下面我找了一张数字的图片,这张图片已经灰度化过了。我们就直接将它二值化。图片如下:

Python提取数字图片特征向量

图片的像素是32x32的。如果不是要化为此值,这一步我们叫做尺寸归一化。

解释一下上面的代码,resize方法里的参数是一个元组,元素分别是宽和高;point函数是用来二值化图片的,其参数是一个lambda函数,函数体就是判断其元素值是否大于120,这里的120就是上面提到的阈值。

二值化后的数组:

Python提取数字图片特征向量

在数组中我们可以大似的看到,数字1大似组成了一个3的形状。

获取网格特征数字统计图

在图片二值化之后,我们通常需要获取到网格统计图,这里我们的图片尺寸是32*32的,所以我们将其化为8*8的点阵图,步骤如下:

1、将二值化后的点阵水平平均划线分成8份,竖直平均划线分成8份。

2、分别统计每一份中像素点为1的个数。

3、将每一个份统计值组合在一起,构成8*8的点阵统计图。

下面我写了个函数来将32*32的数组转化成8*8的网格特征数字统计图:

转化之后我们的到的数组点阵是这样的:

Python提取数字图片特征向量

将二维的统计图转化为一维的特征向量

这一步就比较简单了,只需要将矩阵全部放到一行即可,直接使用np的reshape()方法即可:

输出结果:

Python提取数字图片特征向量

有些同学可能要问,为什么要将二维的点阵转化成一维的特征向量? 这是因为在机器学习中,数据集的格式就是这样的,数据集的一个样例就是一个特征向量,对个样例组成一个训练集。转化为以为的特征向量是便于我们的使用。

全部代码(省略灰度化):

最后送上手写数字训练集图片链接:

文件下载

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:

目前评论:3   其中:访客  2   博主  1

    • 爱学习的奚山君 0

      您好,我想问一下为什么需要将二值化后的数组转化成网格特征统计图呢?

        • 马瑞强 Admin

          @爱学习的奚山君 这只是一种图片特征的提取手段,其实直接二值化后训练也可(向量较多),这只是初步的数据预处理,后续还需进一步处理、调优、比较。

        • 请输入您的QQ号 1

          你好我输出的数组 一行输出18个就会换行请问怎么解决啊